



3-Dimensional micro- and nanofabrication for new biomedical imaging and sensing platforms

Dr. Gary Zabow

Group Leader, Magnetic Imaging Group Project Leader, Magnetic Resonance Imaging Contrast Agents and Probes National Institute of Standards and Technology

Today's burgeoning micro- and nanofabrication technologies are impacting an ever-increasing number of research areas, including multiple across the biomedical fields. Most often, micro- and nanotechnology advances in biological and medical related fields take the form of bottom-up chemically synthesized micro- or nanoparticles thanks to their relatively simple production. But, despite increased complexity, there remains much opportunity to advance all of biomedical imaging, sensing, and treatment through new microstructure architectures and

References: [1] Nature 453, 1058 (2008), [2] Nature 520, 73 (2015), [3] Science 378, 894 (2022)

ABOUT the SPEAKER

Gary Zabow currently serves as a Project Leader and a Group Leader at the National Institute of Standards and Technology (NIST) while also maintaining an adjunct position at the University of Colorado, Boulder. He has a PhD in physics from Harvard University and was previously a Senior Research Fellow at the National Institutes of Health (NIH), with which he maintains strong collaborative ties. His research focuses on biological cell tracking, NMR/MRI contrast agents and microprobes, magnetism and magnetic micro- and nanoparticles, soft-materials-based sensors, and the development and application of novel micro- and nanofabrication processes.

Monday, September 18 at Noon 1003 Engineering Centers (Tong Auditorium)

