Skip to main content
Shubhra Pasayat

Shubhra Pasayat

Assistant Professor

My primary research interests include the design and growth of wide and ultra-wide bandgap materials such as group-III (Aluminum, Gallium, Indium) nitride and oxide using metal-organic chemical vapor deposition or MOCVD. MOCVD is the preferred mode of material growth in the industry for III-Vs, hence MOCVD grown materials can be found in everyday electronics products. I utilize these materials in various optoelectronic devices such as LEDs and LASERs, finding widespread applications in displays, vehicle headlamps, Li-Fi, artificial horticulture, bio-photonics, and also in water/large-area sanitization. These materials can also be used in electronics applications in the form of high-electron mobility transistors (HEMTs) facilitating efficient power conversion (electric cars) and high-frequency communication (5G, 6G, and beyond).

Department

Electrical & Computer Engineering

Contact

4611, Engineering Hall
1415 Engineering Dr
Madison, WI

Professor Shubhra Pasayat - Department of Electrical and Computer Engineering at UW-Madison

  • PhD 2021, University of California, Santa Barbara
  • B.Tech 2013, Indian Institute of Technology (IIT) Kharagpur

  • MOCVD growth of Group III-nitrides and Oxides
  • Optoelectronics: Micro-LEDs, LASERs
  • RF and Power Electronics: HEMTs and MOSFETs
  • Bio-Photonics
  • Lattice Engineering
  • Quantum Materials
  • Porous and flexible materials

Affiliated Departments

  • 2024 Office of Naval Research, DoD DEPSCoR Award
  • 2024 Harold M. Manasevit Young Investigator Award
  • 2024 National Science Foundation, NSF CAREER Award
  • 2024 GomacTec, Outstanding Paper Award
  • 2024 WARF, UW-Madison OVCR Early Career Innovator Award
  • 2022 Japan Society of Applied Physics, Best Paper Award
  • 2022 University of California, Santa Barbara ECE, ECE Outstanding Dissertation Award
  • 2022 Wisconsin Alumni Research Foundation, Electrification Challenge Winner
  • 2021 University of California, Santa Barbara SSLEEC, Outstanding Graduate Student Researcher
  • 2020 University of California, Santa Barbara SSLEEC, Outstanding Graduate Student Researcher
  • 2019 University of California, Santa Barbara, Szilagyi Energy Breakthrough Fellowship Award
  • 2015 Samsung R&D, Samsung Spot Award

  • Lin, Q., Liu, C., Wang, G., Sanyal, S., Dwyer, M., Seitz, M., Earles, T., Tansu, N., Zhang, J., Mawst, L., & others, (2025). High power (over 3W) 376nm III-nitride laser diode with unintentionally doped GaN waveguide. In High-Power Diode Laser Technology XXIII (pp. 57–60).
  • Pasayat, S., Lin, Q., Liu, C., Wang, G., Sanyal, S., Dwyer, M., Seitz, M., Earles, T., Tansu, N., Zhang, J., & others, (2025). High-efficiency UV-A lasers using GaN waveguides on native GaN substrates. In Novel In-Plane Semiconductor Lasers XXIV (p. 1338502).
  • Alam, M. T., Chen, J., Stephenson, K., Abdullah-Al Mamun, M., Mazumder, A. A., Pasayat, S., Khan, A., & Gupta, C. (2025). 2 kV Al0. 64Ga0. 36N-channel high electron mobility transistors with passivation and field plates. Applied Physics Express, 18(1), 016504.
  • Alam, M. T., Mukhopadhyay, S., Haque, M. M., Pasayat, S., & Gupta, C. (2025). 3 kV monolithic bidirectional GaN HEMT on sapphire. Applied Physics Express, 18(1), 016501.
  • Mukhopadhyay, S., Gohel, K., Sanyal, S., Dangi, M., Roya, R. I., Bai, R., Chen, J., Lin, Q., Wang, G., Gupta, C., & others, (2025). Characteristics of transport properties in ultra-wide bandgap Al0. 65Ga0. 35N channel HEMTs with low contact resistance and high breakdown voltage (> 2.5 kV). Applied Physics Letters, 126(15).
  • Liu, C., Pokharel, N., Ponce, Miguel A Betancourt,, Lin, Q., Gopalan, P., Gupta, C., Pasayat, S., & Mawst, L. (2025). Full visible range emissions with ultra-high density InGaN/GaN quantum dots achieved by selective area growth. Journal of Crystal Growth, 128180.
  • Mukhopadhyay, S., Sanyal, S., Xie, S., Zhang, W., Wang, G., & Pasayat, S. (2025). Multistep In Situ Porosification of N-Polar InGaN with Reduced Hillock Density to Achieve Strain-Relaxed InGaN Pseudosubstrates while Maintaining Miscut Steps. ACS Applied Materials & Interfaces, 17(11), 17501--17508.
  • Seitz, M., Boisvere, J., Melanson, B., Liu, C., Lin, Q., Wang, G., Dwyer, M., Earles, T., Tansu, N., Mawst, L., & others, (2024). Demonstration of ultraviolet III-nitride laser diode with an asymmetric waveguide structure. In Gallium Nitride Materials and Devices XIX (pp. 35–40).
  • Liu, C., Lin, Q., Wang, G., Sanyal, S., Mukhopadhyay, S., Zhang, S., Dwyer, M., Seitz, M., Earles, T., Tansu, N., & others, (2024). High-Power Operation of 376 nm Laser with GaN Waveguide. In 2024 IEEE 29th International Semiconductor Laser Conference (ISLC) (pp. 1–2).
  • Liu, C., Pokharel, N., Lin, Q., Ponce, Miguel A Betancourt,, Xu, S., Wang, G., Sanyal, S., Gopalan, P., Gupta, C., Pasayat, S., & others, (2024). Nanopyramid Semipolar Quantum Dot LED Through Selective Area Growth. In 2024 IEEE 29th International Semiconductor Laser Conference (ISLC) (pp. 1–2).

  • E C E 235 - Introduction to Solid State Electronics (Spring 2025)
  • E C E 790 - Master's Research (Spring 2025)
  • E C E 890 - Pre-Dissertator's Research (Spring 2025)
  • PHYSICS 235 - Introduction to Solid State Electronics (Spring 2025)
  • E C E 890 - Pre-Dissertator's Research (Fall 2024)
  • E C E 890 - Pre-Dissertator's Research (Summer 2024)
  • E C E 699 - Advanced Independent Study (Spring 2024)
  • E C E 790 - Master's Research (Spring 2024)
  • E C E 890 - Pre-Dissertator's Research (Spring 2024)
  • E C E 901 - Special Topics in Electrical and Computer Engineering (Spring 2024)
  • E C E 235 - Introduction to Solid State Electronics (Fall 2023)
  • E C E 699 - Advanced Independent Study (Fall 2023)
  • E C E 790 - Master's Research (Fall 2023)
  • E C E 890 - Pre-Dissertator's Research (Fall 2023)
  • PHYSICS 235 - Introduction to Solid State Electronics (Fall 2023)
  • E C E 790 - Master's Research (Summer 2023)
  • E C E 890 - Pre-Dissertator's Research (Summer 2023)