Skip to main content
Matt Gebbie

Matt Gebbie

Conway Assistant Professor

Matthew Gebbie received his Ph.D. in Materials from UC Santa Barbara in 2016, where he was a 2011–2015 Science and Engineering Fellow in the NSF Center for Nanotechnology in Society. Working with Prof. Jacob Israelachvili, Matt led research that bridged colloid science and electrochemistry to progress a molecular-level understanding of how electrostatic correlations govern the properties of ionic liquids and underwater peptide-based adhesives.

Matt was a 2016–2018 GLAM Postdoctoral Fellow at Stanford University, where he worked with Prof. Nicholas Melosh to tackle fundamental questions surrounding nanoscale nucleation and growth, create fluorescent diamond nanomaterials for molecular sensing, and design diamond-based materials to enhance energy interfaces.

Department

Chemical & Biological Engineering

Contact

Engineering Hall
1415 Engineering Dr
Madison, WI

  • PhD 2016, University of California, Santa Barbara
  • BS 2010, North Carolina State University

  • 2024 NC State University Chemical and Biomolecular Engineering , Centennial Lecturer
  • 2024 Royal Society of Chemistry, Soft Matter Emerging Investigator
  • 2024 Telluride Workshop, Telluride Workshop Invited Participant
  • 2024 WARF, WARF High Potential Disclosure
  • 2023 National Science Foundation , National Science Foundation CAREER Award
  • 2022 ACS Petroleum Research Fund, Doctoral New Investigator
  • 2022 Army Research Office, Early Career Award
  • 2020 College of Engineering, Univ. of Wisconsin-Madison, Conway Assistant Professorship
  • 2017 ACS Colloids Division, Victor K. LaMer Award Finalist
  • 2016 Stanford Univversity, GLAM Postdoctoral Fellowship
  • 2015 National Science Foundation, 2015 Lindau Nobel Laureate Interdisciplinary Meeting, NSF Delegate
  • 2011 NSF Center for Nanotechnology in Society at UCSB, Science and Engineering Fellowship

  • Guo, W., Liu, B., Anderson, S. R., Johnstone, S. G., & Gebbie, M. (2024). Deciphering the role of aromatic cations in electrochemical CO 2 reduction: interfacial ion assembly governs reaction pathways. Journal of Materials Chemistry A, 12(28), 17169--17180.
  • Liu, B., Guo, W., Anderson, S. R., Johnstone, S. G., Wu, S., Herrington, M. C., & Gebbie, M. (2024). Exploring how cation entropy influences electric double layer formation and electrochemical reactivity. Soft Matter, 20(2), 351--364.
  • Carroll, G. M., Gebbie, M., Stahl, S. S., Johnson, M. R., Luca, O. R., Petersen, H. A., Bomble, Y. J., Neale, N. R., & Cortright, R. D. (2023). Alternative Energy Carriers: Unique Interfaces for Electrochemical Hydrogenic Transformations. Advanced Energy Materials, 13(14), 2203751.
  • Gebbie, M., Liu, B., Guo, W., Anderson, S. R., & Johnstone, S. G. (2023). Linking electric double layer formation to electrocatalytic activity. ACS Catalysis, 13(24), 16222--16239.
  • McAlpine, J., Bloemendal, A., Dahl, J. E., Carlson, R. M., Guzei, I. A., Clewett, C. F., Tkachenko, B. O., Schreiner, P. R., & Gebbie, M. (2023). Modulating entropic driving forces to promote high lithium mobility in solid organic electrolytes. Chemistry of Materials, 35(9), 3545--3554.
  • Guo, W., Liu, B., & Gebbie, M. (2023). Suppressing Co-Ion Generation via Cationic Proton Donors to Amplify Driving Forces for Electrochemical CO2 Reduction. The Journal of Physical Chemistry C, 127(29), 14243--14254.
  • Gebbie, M., Liu, B., & Guo, W. (2023). Thermodynamic departures from ideality provide insight into electrochemical CO2 reduction. Chem Catalysis, 3(12).
  • Cashen, R. K., Donoghue, M. M., Schmeiser, A. J., & Gebbie, M. (2022). Bridging database and experimental analysis to reveal super-hydrodynamic conductivity scaling regimes in ionic liquids. The Journal of Physical Chemistry B, 126(32), 6039--6051.
  • Liu, B., Guo, W., & Gebbie, M. (2022). Tuning ionic screening to accelerate electrochemical CO2 reduction in ionic liquid electrolytes. ACS Catalysis, 12(15), 9706--9716.
  • King, E. M., Gebbie, M., & Melosh, N. A. (2019). Impact of rigidity on molecular self-assembly. Langmuir, 35(48), 16062--16069.

  • CBE 547 - Introduction to Colloid and Interface Science (Spring 2025)
  • CBE 599 - Special Problems (Spring 2025)
  • CBE 890 - Pre-Dissertator's Research (Spring 2025)
  • CBE 961 - Seminar-Chemical Engineering (Spring 2025)
  • CBE 990 - Thesis-Research (Spring 2025)
  • CBE 310 - Chemical Process Thermodynamics (Fall 2024)
  • CBE 599 - Special Problems (Fall 2024)
  • CBE 890 - Pre-Dissertator's Research (Fall 2024)
  • CBE 990 - Thesis-Research (Fall 2024)
  • CBE 890 - Pre-Dissertator's Research (Summer 2024)
  • CBE 990 - Thesis-Research (Summer 2024)
  • CBE 489 - Honors in Research (Spring 2024)
  • CBE 547 - Introduction to Colloid and Interface Science (Spring 2024)
  • CBE 599 - Special Problems (Spring 2024)
  • CBE 890 - Pre-Dissertator's Research (Spring 2024)
  • CBE 961 - Seminar-Chemical Engineering (Spring 2024)
  • CBE 990 - Thesis-Research (Spring 2024)
  • CBE 489 - Honors in Research (Fall 2023)
  • CBE 547 - Introduction to Colloid and Interface Science (Fall 2023)
  • CBE 599 - Special Problems (Fall 2023)
  • CBE 890 - Pre-Dissertator's Research (Fall 2023)
  • CBE 961 - Seminar-Chemical Engineering (Fall 2023)
  • CBE 990 - Thesis-Research (Fall 2023)
  • CBE 890 - Pre-Dissertator's Research (Summer 2023)
  • CBE 990 - Thesis-Research (Summer 2023)