Skip to main content

DEGREE Nuclear Engineering and Engineering Physics, PhD

Doctoral degree in nuclear engineering

As a PhD student in nuclear engineering and engineering physics, you’ll gain deeper experience studying the interaction of radiation with matter. With a strong emphasis on engineering and applied science, you’ll be able to focus on any of several areas, including researching, designing, developing and deploying fission reactors; fusion engineering; plasma physics; radiation damage to materials; applied superconductivity and cryogenics; and large-scale computing in engineering science.

At a glance

Engineering physics department

of the nation’s few remaining research and teaching nuclear reactors
undergraduate ranking among public universities in nuclear engineering
graduate ranking among public universities in nuclear engineering

Learn more about what information you need to apply.

Fall Deadline December 15
Spring Deadline October 1
Summer Deadline December 15
GRE (Graduate Record Examinations) Required.*
English Proficiency Test Every applicant whose native language is not English or whose undergraduate instruction was not in English must provide an English proficiency test score and meet the Graduate School minimum requirements (
Other Test(s) (e.g., GMAT, MCAT) n/a
Letters of Recommendation Required 3

The Graduate School sets minimum requirements for admissions. Academic program admission requirements are often more rigorous than those set by the Graduate School. Please check the program website for details and admissions deadlines.


Tuition and segregated fee rates are always listed per semester (not for Fall and Spring combined).

View tuition rates

Graduate School Resources

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid. Further funding information is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

Program Resources

Offers of financial support from the Department, College, and University are in the form of research assistantships (RAs), teaching assistantships (TAs), project assistantships (PAs), and partial or full fellowships. Prospective PhD students that receive such offers will have a minimum five-year guarantee of support. The funding for RAs comes from faculty research grants. Each professor decides on his or her own RA offers, and a portion of the top domestic applicants is invited to visit Madison in order to meet faculty members and tour the department facilities. International applicants must secure an RA, TA, PA, fellowship, or independent funding before admission is final. Funded students are expected to maintain full-time enrollment.  See the program website for additional information.

In the Department of Engineering Physics, we strive to design and deploy unique world-class experimental and computational capabilities to translate novel discoveries into transformative technologies. Having a broad range of laboratory facilities and collaborative centers at the right scale for energy and mechanics research is a hallmark of the department. The technologies we develop can solve challenges in energy, health, space, security and many other areas.

View our research

Minimum graduate school requirements

Review the Graduate School minimum academic progress and degree requirements, in addition to the program requirements listed below.

Minimum Credit Requirement 51 credits approved by the student’s faculty advisor
Minimum Residence Credit Requirement 32 credits
Minimum Graduate Coursework Requirement 26 of the required 51 credits must be in graduate-level coursework from nuclear engineering, math, physics, chemistry, computer science, or any other engineering department except E P D; courses with the Graduate Level Coursework attribute are identified and searchable in the university’s Course Guide (
Overall Graduate GPA Requirement 3.00 GPA required.
Other Grade Requirements Courses in which grades of BC, C, or below are received cannot be counted toward the degree except as follows: 1) Credits of C will be allowed provided they are balanced by twice as many credits of A or by four times as many credits of AB, 2) Credits of BC will be allowed provided they are balanced by twice as many credits of AB or by an equal number of credits of A.
Assessments and Examinations Ph.D. qualifying examination is required of all students.

After acceptance of the student’s doctoral plan of study, the student must take an oral preliminary examination.

Final oral examination is required at the end of the thesis work.
Language Requirements No language requirements.
Doctoral Minor/Breadth Requirements All doctoral students are required to complete a 9-credit minor and an approved non-technical minor program.

Students must fulfill the coursework requirements for the nuclear engineering and engineering physics M.S. degree whether receiving the M.S. degree or going directly to the PhD. They must complete an additional 9 credits of technical coursework at the graduate level, beyond the coursework requirement for the MS. Candidates must take three 700-level courses; must satisfy the Ph.D. technical minor requirement; and must satisfy the PhD non-technical minor requirement.

The candidate is also required to complete, as a graduate student, one course at the 400 level or above in each of the following Areas: fission reactors; plasma physics and fusion; materials; engineering mathematics and computation (see Area Coursework Examples below).

M.S. Coursework Requirements

The following courses, or courses with similar material content, must be taken prior to or during the course of study: N E 427 Nuclear Instrumentation Laboratory; N E 428 Nuclear Reactor Laboratory or N E 526 Laboratory Course in Plasmas; N E 408 Ionizing Radiation or N E/​MED PHYS  569 Health Physics and Biological Effects.

Thesis track1: maximum of 12 credits for thesis; at least 8 credits of N E courses 400 level or above; remaining credits (also 400 level or above) must be in appropriate technical areas2; at least 9 credits must be 500 level and above; up to 3 credits can be seminar credits.

Non-Thesis track1: at least 15 credits of N E courses at the 400 level or above; remaining 15 credits (also 400 level or above) must be in appropriate technical areas2; at least 12 credits must be at the 500 level or above; up to 3 credits can be seminar credits.

For both the thesis and non-thesis options, only one course (maximum of 3 credits) of independent study (N E 699 Advanced Independent Study, N E 999 Advanced Independent Study) is allowed.

Area Coursework Examples

These courses are examples that would meet the requirement and are not meant to be a restricted list of possible courses. The candidate is required to complete one course in each of the following areas:

Fission Reactors
N E 405 Nuclear Reactor Theory3
N E 408 Ionizing Radiation3
N E 411 Nuclear Reactor Engineering3
N E/​MED PHYS  506 Monte Carlo Radiation Transport3
N E/​M E  520 Two-Phase Flow and Heat Transfer3
N E 550 Advanced Nuclear Power Engineering3
N E 555 Nuclear Reactor Dynamics3
N E/​M E  565 Power Plant Technology3
N E/​I SY E  574 Methods for Probabilistic Risk Analysis of Nuclear Power Plants3
Plasma Physics & Fusion
N E/​E C E/​PHYSICS  525 Introduction to Plasmas3
N E/​E C E/​PHYSICS  527 Plasma Confinement and Heating3
N E/​E C E  528 Plasma Processing and Technology3
N E 536 Feasibility St of Power from Controlled Thermonuclear Fusion3
N E/​M S & E  423 Nuclear Engineering Materials3
N E 541 Radiation Damage in Metals3
PHYSICS 551 Solid State Physics3
Engineering Mathematics & Computation
E P/​E M A  547 Engineering Analysis I3
E P/​E M A  548 Engineering Analysis II3
COMP SCI/​MATH  513 Numerical Linear Algebra3
COMP SCI/​MATH  514 Numerical Analysis3
MATH 703 Methods of Applied Mathematics 13

Non-Technical Minor Requirements

Ph.D. candidates must complete one of the following four study options prior to receiving dissertator status. As this is a formal Department requirement, the student should select a Non-Technical Minor early in the program, and must complete it to achieve dissertator status (see below). The Non-Technical Minor must be planned with the help of the candidate’s advisor and must be approved by the Department NonTechnical Minor Advisor except for Study Option IV which must be approved by the Department faculty. A Non-Technical Minor Approval Form is available from the Graduate Student Services Office, 3182 Mechanical Engineering, and must be filed prior to submission of the doctoral plan form. Courses below the 400 level may be used as a part of the Non-Technical Minor.

Study Option I: Technology-Society Interaction Coursework. This option is intended to increase the student’s awareness of the possible effects of technology on society and of the professional responsibilities of engineers and scientists in understanding such side effects. These effects could, for example, involve the influence of engineering on advancement of human welfare, on the distribution of wealth in society, or on environmental and ecological systems.

Suggested courses for fulfilling Option I include:

CIV ENGR 320 Environmental Engineering3
CIV ENGR 423 Air Pollution Effects, Measurement and Control3
ECON/​A A E  474 Economic Problems of Developing Areas3
GEOG/​URB R PL  305 Introduction to the City3-4
GEOG/​URB R PL  505 Urban Spatial Patterns and Theories3
HIST SCI/​MED HIST/​RELIG ST  331 Science, Medicine and Religion3

Study Option IIHumanistic Society Studies Coursework. The basic objectives of this option are to help prepare the student to bridge the gap between C.P. Snow’s "Two Cultures." Snow’s 1959 lecture thesis was that the breakdown of communication between the "two cultures" of modern society – the sciences and the humanities – was a major hindrance to solving the world’s problems. Study might be designed to give a greater appreciation of the arts such as the classics, music, or painting, or it might be designed, for example, as preparation for translating technical information to the non-technical public.

Suggested areas of study to fulfill Option II include Anthropology, Area Studies, Art, Art History, Classics, Comparative Literature, Contemporary Trends, English (literature), Foreign Languages (literature), Social Work, Sociology, and Speech. Under either Option I or II, the student must take 6 credits of coursework. The courses must be approved by the student’s advisor and the non-technical minor advisor, and the 6 credits should be concentrated in one topical area. Grades in these courses need not meet the Departmental Grade Policy. However, note that all grades in 300 level or above courses (including grades for Non-Technical Minor courses) are calculated in the Graduate School minimum 3.0 graduation requirement.

Study Option III: Foreign Culture Coursework. This option is intended for the student who desires to live and work in a foreign nation or work with people of a foreign culture. Examples include studies of the history of a foreign nation, of the political stability of a region of the world, of the culture of a particular group within a nation, or of the spoken language of a foreign nation. For Option III the student must take six credits of courses under all of the same conditions and requirements as for Option I and II unless choosing language study. For the latter case, the student must attain a grade of C or better in all courses. If the student has previous knowledge of a language, it is required that either courses beyond the introductory level will be elected or that another language will be elected.

Study Option IV: Technology-Society Interactions Experience. There are many possible technology-society interactions that might be more educational and meaningful for the student as an actual experience than coursework. For example, the student might run for and be elected to a position of alderperson in the city government. Consequently, this option allows the student to pursue a particular aspect of the interaction using his own time and resources.

Study Option IV activity must be planned with the student’s advisor and be approved by the faculty. The effort required should be equivalent to 6 credits of coursework. Upon completion of this program, the student will prepare a written or oral report.

Note: Foreign students from countries in which English is not the native tongue have inherently fulfilled these non-technical study goals and are exempt from these formal requirements.

Graduate Student Services
3182 Mechanical Engineering
1513 University Ave., Madison, WI 53706

Carl Sovinec, Director of Graduate Studies

View the Graduate Guide for program-specific information on admission, coursework, policies, rules and regulations.

Engineering physics news

In our department, our research spans areas that include aerospace, materials, fusion energy, nuclear systems and more—and we are a community that brings them all together for the benefit of our world.

Become a Badger Engineer